tuxpaint-pencil-sharpener/src/fill.c
2023-04-23 23:26:00 -07:00

1054 lines
26 KiB
C

/*
fill.c
Fill tool
Tux Paint - A simple drawing program for children.
Copyright (c) 2002-2023 by Bill Kendrick and others; see AUTHORS.txt
bill@newbreedsoftware.com
https://tuxpaint.org/
Flood fill code based on Wikipedia example:
http://www.wikipedia.org/wiki/Flood_fill/C_example
by Damian Yerrick - http://www.wikipedia.org/wiki/Damian_Yerrick
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(See COPYING.txt)
Last updated: February 26, 2023
$Id$
*/
#include <stdio.h>
#include <string.h>
/* math.h makes y1 an obscure function! */
#define y1 evil_y1
#include <math.h>
#undef y1
#include "fill.h"
#include "rgblinear.h"
#include "playsound.h"
#include "pixels.h"
#include "progressbar.h"
#ifndef ATTRIBUTE_UNUSED
#define ATTRIBUTE_UNUSED __attribute__ ((__unused__))
#endif /* ATTRIBUTE_UNUSED */
/* How close colors need to be to match all the time */
#define COLOR_MATCH_NARROW 0.04
/* How close colors can be to match for a few pixels */
#define COLOR_MATCH_WIDE 0.60
/* How many pixels can we allow a wide match before stopping? */
#define WIDE_MATCH_THRESHOLD 3
// #define DEBUG
// #define DEBUG_WATCH
#define QUEUE_SIZE_CHUNK 1024
typedef struct queue_s
{
int x, y, y_outside;
} queue_t;
queue_t *queue;
int queue_size = 0, queue_end = 0;
typedef struct sdf_point_s
{
int dx, dy;
} sdf_point;
sdf_point sdf_pt_inside = { 0, 0 };
sdf_point sdf_pt_empty = { 9999, 9999 };
typedef struct sdf_grid_s
{
sdf_point **grid;
int w, h;
} sdf_grid;
/* Local function prototypes: */
SDL_Surface *global_screen, *global_last, *global_canvas;
Uint32 global_old_colr, global_cur_colr;
Uint8 *global_touched;
int global_extent_x1, global_extent_y1, global_extent_x2, global_extent_y2;
int global_prog_anim;
double colors_close(SDL_Surface * canvas, Uint32 c1, Uint32 c2);
Uint32 blend(SDL_Surface * canvas, Uint32 draw_colr, Uint32 old_colr, double pct);
void simulate_flood_fill_outside_check(SDL_Surface * screen,
SDL_Texture * texture, SDL_Renderer * renderer, int x, int y, int y_outside);
void draw_brush_fill_single(SDL_Surface * canvas, int x, int y, Uint32 draw_color, Uint8 * touched);
void init_queue(void);
void add_to_queue(int x, int y, int y_outside);
int remove_from_queue(int *x, int *y, int *y_outside);
void cleanup_queue(void);
void sdf_pt_get(sdf_grid * g, int x, int y, sdf_point * p);
void sdf_pt_put(sdf_grid * g, int x, int y, sdf_point p);
int sdf_distsq(sdf_point p);
void sdf_compare(sdf_grid * g, sdf_point * p, int x, int y, int offsetx, int offsety);
int malloc_sdf_grid(sdf_grid * g, int w, int h);
void free_sdf_grid(sdf_grid * g);
void sdf_fill_bitmask_to_sdf_grids(Uint8 * bitmask, int w, int h, sdf_grid * g1, sdf_grid * g2);
void sdf_generate(sdf_grid * g);
void init_queue(void)
{
queue_size = 0;
queue_end = 0;
queue = (queue_t *) malloc(sizeof(queue_t) * QUEUE_SIZE_CHUNK);
if (queue == NULL)
{
fprintf(stderr, "Fill queue cannot be malloc()'d\n");
return;
}
queue_size = QUEUE_SIZE_CHUNK;
}
void add_to_queue(int x, int y, int y_outside)
{
/* Reallocate if we need more space */
if (queue_end + 1 > queue_size)
{
queue_t *tmp;
tmp = (queue_t *) realloc(queue, sizeof(queue_t) * (queue_size + QUEUE_SIZE_CHUNK));
if (tmp == NULL)
{
fprintf(stderr, "Fill queue cannot be realloc()'d\n");
return;
}
queue_size += QUEUE_SIZE_CHUNK;
#ifdef DEBUG
printf("queue_size = %d\n", queue_size);
fflush(stdout);
#endif
queue = tmp;
}
queue[queue_end].x = x;
queue[queue_end].y = y;
queue[queue_end].y_outside = y_outside;
queue_end++;
#ifdef DEBUG
if (queue_end % 100 == 0)
{
printf("queue_end = %d\n", queue_end);
fflush(stdout);
}
#endif
}
int remove_from_queue(int *x, int *y, int *y_outside)
{
if (queue_end == 0)
return 0;
queue_end--;
*x = queue[queue_end].x;
*y = queue[queue_end].y;
*y_outside = queue[queue_end].y_outside;
#ifdef DEBUG
if (queue_end % 100 == 0)
{
printf("queue_end = %d\n", queue_end);
fflush(stdout);
}
#endif
return 1;
}
void cleanup_queue(void)
{
if (queue != NULL)
free(queue);
#ifdef DEBUG
printf("Final size was %d\n", queue_size);
#endif
queue_size = 0;
queue_end = 0;
}
/* Returns how similar colors 'c1' and 'c2' are */
double colors_close(SDL_Surface * canvas, Uint32 c1, Uint32 c2)
{
Uint8 r1, g1, b1, r2, g2, b2;
if (c1 == c2)
{
/* Get it over with quick, if possible! */
return 0.0;
}
else
{
double r, g, b;
SDL_GetRGB(c1, canvas->format, &r1, &g1, &b1);
SDL_GetRGB(c2, canvas->format, &r2, &g2, &b2);
// use distance in linear RGB space
r = sRGB_to_linear_table[r1] - sRGB_to_linear_table[r2];
r *= r;
g = sRGB_to_linear_table[g1] - sRGB_to_linear_table[g2];
g *= g;
b = sRGB_to_linear_table[b1] - sRGB_to_linear_table[b2];
b *= b;
// easy to confuse:
// dark grey, brown, purple
// light grey, tan
// red, orange
return (r + g + b);
}
}
int would_flood_fill(SDL_Surface * canvas, Uint32 cur_colr, Uint32 old_colr)
{
if (colors_close(canvas, cur_colr, old_colr) < COLOR_MATCH_NARROW)
{
return 0;
}
else
{
return 1;
}
}
void do_flood_fill(SDL_Surface * screen, SDL_Texture * texture,
SDL_Renderer * renderer, SDL_Surface * last,
SDL_Surface * canvas, int x, int y, Uint32 cur_colr,
Uint32 old_colr, int *x1, int *y1, int *x2, int *y2, Uint8 * touched)
{
simulate_flood_fill(screen, texture, renderer, last, canvas, x, y, cur_colr, old_colr, x1, y1, x2, y2, touched);
}
Uint32 blend(SDL_Surface * canvas, Uint32 draw_colr, Uint32 old_colr, double pct)
{
Uint8 old_r, old_g, old_b, draw_r, draw_g, draw_b, new_r, new_g, new_b;
SDL_GetRGB(draw_colr, canvas->format, &draw_r, &draw_g, &draw_b);
SDL_GetRGB(old_colr, canvas->format, &old_r, &old_g, &old_b);
new_r = (Uint8) (((float)old_r) * (1.00 - pct) + ((float)draw_r * pct));
new_g = (Uint8) (((float)old_g) * (1.00 - pct) + ((float)draw_g * pct));
new_b = (Uint8) (((float)old_b) * (1.00 - pct) + ((float)draw_b * pct));
return SDL_MapRGB(canvas->format, draw_r, draw_g, draw_b);
return SDL_MapRGB(canvas->format, new_r, new_g, new_b);
}
void simulate_flood_fill(SDL_Surface * screen, SDL_Texture * texture,
SDL_Renderer * renderer, SDL_Surface * last,
SDL_Surface * canvas, int x, int y, Uint32 cur_colr,
Uint32 old_colr, int *extent_x1, int *extent_y1,
int *extent_x2, int *extent_y2, Uint8 * touched)
{
int y_outside;
/* Get ready */
global_screen = screen;
global_last = last;
global_canvas = canvas;
global_old_colr = old_colr;
global_cur_colr = cur_colr;
global_touched = touched;
global_extent_x1 = x;
global_extent_y1 = y;
global_extent_x2 = x;
global_extent_y2 = y;
global_prog_anim = 0;
/* Queue up the first things to work on: */
init_queue();
add_to_queue(x, y, 0);
/* Do the work (possibly queuing more, as we go) */
while (remove_from_queue(&x, &y, &y_outside))
{
simulate_flood_fill_outside_check(screen, texture, renderer, x, y, y_outside);
}
cleanup_queue();
*extent_x1 = global_extent_x1;
*extent_y1 = global_extent_y1;
*extent_x2 = global_extent_x2;
*extent_y2 = global_extent_y2;
}
void simulate_flood_fill_outside_check(SDL_Surface * screen,
SDL_Texture * texture, SDL_Renderer * renderer, int x, int y, int y_outside)
{
int fillL, fillR, narrowFillL, narrowFillR, i, outside, just_queued;
double in_line, closeness;
Uint32 px_colr;
Uint8 touch_byt;
/* "Same" color? No need to fill */
if (!would_flood_fill(global_canvas, global_cur_colr, global_old_colr))
return;
if (x < 0 || x >= global_canvas->w || y < 0 || y >= global_canvas->h)
return;
/* Don't re-visit the same pixel */
if (global_touched && global_touched[(y * global_canvas->w) + x])
return;
if (y < global_extent_y1)
{
global_extent_y1 = y;
}
if (y > global_extent_y2)
{
global_extent_y2 = y;
}
fillL = x;
fillR = x;
narrowFillL = x;
narrowFillR = x;
global_prog_anim++;
if ((global_prog_anim % 8) == 0)
{
show_progress_bar_(screen, texture, renderer);
}
if ((global_prog_anim % 800) == 1) /* Always lay sound _once_ */
playsound(global_canvas, 1, SND_FILL, 1, x, SNDDIST_NEAR);
#ifdef DEBUG_WATCH
if (global_prog_anim % 100 == 0)
{
SDL_BlitSurface(global_canvas, NULL, global_screen, NULL);
SDL_Flip(global_screen);
}
#endif
/* Find left side, filling along the way */
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillL /* - 1 */ , y);
in_line = colors_close(global_canvas, px_colr, global_old_colr);
outside = 0;
while (in_line < COLOR_MATCH_WIDE && outside < WIDE_MATCH_THRESHOLD)
{
if (in_line > COLOR_MATCH_NARROW)
{
outside++;
}
else
{
narrowFillL = fillL;
}
if (global_touched != NULL)
{
touch_byt = (255 - ((Uint8) (in_line * 85)));
if (touch_byt == 0)
touch_byt = 1;
global_touched[(y * global_canvas->w) + fillL] = touch_byt;
}
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillL, y);
putpixels[global_canvas->format->BytesPerPixel] (global_canvas, fillL, y,
blend(global_canvas, global_cur_colr, px_colr, (1.0 - in_line)));
fillL--;
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillL, y);
if (fillL >= 0)
{
in_line = colors_close(global_canvas, px_colr, global_old_colr);
}
else
{
in_line = 3.0;
}
}
if (fillL >= 0)
{
if (global_touched != NULL)
{
touch_byt = (255 - ((Uint8) (in_line * 85)));
if (touch_byt == 0)
touch_byt = 1;
global_touched[(y * global_canvas->w) + fillL] = touch_byt;
}
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillL, y);
putpixels[global_canvas->format->BytesPerPixel] (global_canvas, fillL, y,
blend(global_canvas, global_cur_colr, px_colr, (1.0 - in_line)));
}
if (fillL < global_extent_x1)
{
global_extent_x1 = fillL;
}
fillL++;
/* Find right side, filling along the way */
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillR + 1, y);
in_line = colors_close(global_canvas, px_colr, global_old_colr);
outside = 0;
while (in_line < COLOR_MATCH_WIDE && outside < WIDE_MATCH_THRESHOLD)
{
if (in_line > COLOR_MATCH_NARROW)
{
outside++;
}
else
{
narrowFillR = fillR;
}
if (global_touched != NULL)
{
touch_byt = (255 - ((Uint8) (in_line * 85)));
if (touch_byt == 0)
touch_byt = 1;
global_touched[(y * global_canvas->w) + fillR] = touch_byt;
}
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillR, y);
putpixels[global_canvas->format->BytesPerPixel] (global_canvas, fillR, y,
blend(global_canvas, global_cur_colr, px_colr, (1.0 - in_line)));
fillR++;
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillR, y);
if (fillR < global_canvas->w)
{
in_line = colors_close(global_canvas, px_colr, global_old_colr);
}
else
{
in_line = 3.0;
}
}
if (fillR < global_canvas->w)
{
if (global_touched != NULL)
{
touch_byt = (255 - ((Uint8) (in_line * 85)));
if (touch_byt == 0)
touch_byt = 1;
global_touched[(y * global_canvas->w) + fillR] = touch_byt;
}
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, fillR, y);
putpixels[global_canvas->format->BytesPerPixel] (global_canvas, fillR, y,
blend(global_canvas, global_cur_colr, px_colr, (1.0 - in_line)));
}
if (fillR > global_extent_x2)
{
global_extent_x2 = fillR;
}
fillR--;
/* Continue filling upwards from this scanline */
just_queued = 0;
if (y > 0)
{
for (i = narrowFillL; i <= narrowFillR; i++)
{
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, i, y - 1);
closeness = colors_close(global_canvas, px_colr, global_old_colr);
if (closeness < COLOR_MATCH_NARROW || (closeness < COLOR_MATCH_WIDE && y_outside < WIDE_MATCH_THRESHOLD))
{
if (!just_queued && (global_touched == NULL || !global_touched[((y - 1) * global_canvas->w) + i]))
{
add_to_queue(i, y - 1, y_outside + 1);
just_queued = 1;
}
else
{
just_queued = 0;
}
}
else
{
just_queued = 0;
}
}
}
/* Continue filling downwards from this scanline */
just_queued = 0;
if (y < global_canvas->h - 1)
{
for (i = narrowFillL; i <= narrowFillR; i++)
{
px_colr = getpixels[global_last->format->BytesPerPixel] (global_last, i, y + 1);
closeness = colors_close(global_canvas, px_colr, global_old_colr);
if (closeness < COLOR_MATCH_NARROW || (closeness < COLOR_MATCH_WIDE && y_outside < WIDE_MATCH_THRESHOLD))
{
if (!just_queued && (global_touched == NULL || !global_touched[((y + 1) * global_canvas->w) + i]))
{
add_to_queue(i, y + 1, y_outside + 1);
just_queued = 1;
}
else
{
just_queued = 0;
}
}
else
{
just_queued = 0;
}
}
}
}
void draw_linear_gradient(SDL_Surface * canvas, SDL_Surface * last,
int x_left, int y_top, int x_right, int y_bottom,
int x1, int y1, int x2, int y2, Uint32 draw_color, Uint8 * touched)
{
Uint32 old_colr, new_colr;
int xx, yy;
Uint8 draw_r, draw_g, draw_b, old_r, old_g, old_b, new_r, new_g, new_b;
float A, B, C, C1, C2, ratio;
/* Get our target color */
SDL_GetRGB(draw_color, canvas->format, &draw_r, &draw_g, &draw_b);
A = (x2 - x1);
B = (y2 - y1);
C1 = (A * x1) + (B * y1);
C2 = (A * x2) + (B * y2);
/* FIXME: C2 should be larger than C1? */
for (yy = y_top; yy <= y_bottom; yy++)
{
for (xx = x_left; xx <= x_right; xx++)
{
if (touched[(yy * canvas->w) + xx])
{
/* Get the old color, and blend it (with a distance-based ratio) with the target color */
old_colr = getpixels[last->format->BytesPerPixel] (last, xx, yy);
SDL_GetRGB(old_colr, last->format, &old_r, &old_g, &old_b);
/* (h/t David Z on StackOverflow for how to quickly compute this:
https://stackoverflow.com/questions/521493/creating-a-linear-gradient-in-2d-array) */
C = (A * xx) + (B * yy);
if (C < C1)
{
/* At/beyond the click spot (opposite direction of mouse); solid color */
ratio = 0.0;
}
else if (C >= C2)
{
/* At/beyond the mouse; completely faded out */
ratio = 1.0;
}
else
{
/* The actual gradient... */
ratio = (C - C1) / (C2 - C1);
}
/* Apply fuzziness at any antialiased edges we detected */
ratio = (ratio * ((float)touched[yy * canvas->w + xx] / 255.0));
new_r = (Uint8) (((float)old_r) * ratio + ((float)draw_r * (1.0 - ratio)));
new_g = (Uint8) (((float)old_g) * ratio + ((float)draw_g * (1.0 - ratio)));
new_b = (Uint8) (((float)old_b) * ratio + ((float)draw_b * (1.0 - ratio)));
new_colr = SDL_MapRGB(canvas->format, new_r, new_g, new_b);
putpixels[canvas->format->BytesPerPixel] (canvas, xx, yy, new_colr);
}
}
}
}
void draw_brush_fill_single(SDL_Surface * canvas, int x, int y, Uint32 draw_color, Uint8 * touched)
{
int xx, yy;
int pix;
for (yy = -16; yy < 16; yy++)
{
for (xx = -16; xx < 16; xx++)
{
pix = ((y + yy) * canvas->w) + (x + xx);
if (pix >= 0 && pix < canvas->w * canvas->h)
{
if ((xx * xx) + (yy * yy) < (16 * 16) && touched[pix])
{
putpixels[canvas->format->BytesPerPixel] (canvas, x + xx, y + yy, draw_color);
}
}
}
}
}
void draw_brush_fill(SDL_Surface * canvas,
int x_left ATTRIBUTE_UNUSED, int y_top ATTRIBUTE_UNUSED,
int x_right ATTRIBUTE_UNUSED,
int y_bottom ATTRIBUTE_UNUSED, int x1, int y1, int x2,
int y2, Uint32 draw_color, Uint8 * touched, int *up_x1, int *up_y1, int *up_x2, int *up_y2)
{
int dx, dy;
int y;
int orig_x1, orig_y1, orig_x2, orig_y2, tmp;
float m, b;
orig_x1 = x1;
orig_y1 = y1;
orig_x2 = x2;
orig_y2 = y2;
dx = x2 - x1;
dy = y2 - y1;
if (dx != 0)
{
m = ((float)dy) / ((float)dx);
b = y1 - m * x1;
if (x2 >= x1)
dx = 1;
else
dx = -1;
while (x1 != x2)
{
y1 = m * x1 + b;
y2 = m * (x1 + dx) + b;
if (y1 > y2)
{
for (y = y1; y >= y2; y--)
draw_brush_fill_single(canvas, x1, y, draw_color, touched);
}
else
{
for (y = y1; y <= y2; y++)
draw_brush_fill_single(canvas, x1, y, draw_color, touched);
}
x1 = x1 + dx;
}
}
else
{
if (y1 > y2)
{
y = y1;
y1 = y2;
y2 = y;
}
for (y = y1; y <= y2; y++)
draw_brush_fill_single(canvas, x1, y, draw_color, touched);
}
if (orig_x1 > orig_x2)
{
tmp = orig_x1;
orig_x1 = orig_x2;
orig_x2 = tmp;
}
if (orig_y1 > orig_y2)
{
tmp = orig_y1;
orig_y1 = orig_y2;
orig_y2 = tmp;
}
*up_x1 = orig_x1 - 16;
*up_y1 = orig_y1 - 16;
*up_x2 = orig_x2 + 16;
*up_y2 = orig_y2 + 16;
}
void draw_radial_gradient(SDL_Surface * canvas, int x_left, int y_top,
int x_right, int y_bottom, int x, int y, Uint32 draw_color, Uint8 * touched)
{
Uint32 old_colr, new_colr;
int xx, yy;
int pix;
float xd, yd, dist, rad, ratio;
Uint8 draw_r, draw_g, draw_b, old_r, old_g, old_b, new_r, new_g, new_b;
/* Calculate the max radius of the filled area */
xd = max(abs(x - x_right), abs(x - x_left));
yd = max(abs(y - y_bottom), abs(y - y_top));
rad = sqrt(xd * xd + yd * yd);
if (rad == 0)
{
return;
}
/* Get our target color */
SDL_GetRGB(draw_color, canvas->format, &draw_r, &draw_g, &draw_b);
/* Traverse the flood-filled zone */
for (yy = y_top; yy <= y_bottom; yy++)
{
for (xx = x_left; xx <= x_right; xx++)
{
/* Only alter the pixels within the flood itself */
pix = (yy * canvas->w) + xx;
if (pix >= 0 && pix < canvas->w * canvas->h)
{
if (touched[pix])
{
/* Determine the distance from the click point */
xd = fabs((float)(xx - x));
yd = fabs((float)(yy - y));
dist = sqrt(xd * xd + yd * yd);
if (dist < rad)
{
ratio = (dist / rad);
/* Get the old color, and blend it (with a distance-based ratio) with the target color */
old_colr = getpixels[canvas->format->BytesPerPixel] (canvas, xx, yy);
SDL_GetRGB(old_colr, canvas->format, &old_r, &old_g, &old_b);
/* Apply fuzziness at any antialiased edges we detected */
ratio = (ratio * ((float)touched[pix] / 255.0));
new_r = (Uint8) (((float)old_r) * ratio + ((float)draw_r * (1.00 - ratio)));
new_g = (Uint8) (((float)old_g) * ratio + ((float)draw_g * (1.00 - ratio)));
new_b = (Uint8) (((float)old_b) * ratio + ((float)draw_b * (1.00 - ratio)));
new_colr = SDL_MapRGB(canvas->format, new_r, new_g, new_b);
putpixels[canvas->format->BytesPerPixel] (canvas, xx, yy, new_colr);
}
}
}
}
}
}
/* Signed Distance Field functions --------------------------------------
Based on `8ssedt` example code by Richard Mitton <http://www.codersnotes.com/about/>, 2009
Converted to C for Tux Paint by Bill Kendrick <bill@newbreedsoftware.com>, 2023
*/
void sdf_pt_get(sdf_grid * g, int x, int y, sdf_point * p)
{
if (x >= 0 && x < g->w && y >= 0 && y < g->h)
{
memcpy(p, &(g->grid[y][x]), sizeof(sdf_point));
}
else
{
memcpy(p, &(sdf_pt_empty), sizeof(sdf_point));
}
}
void sdf_pt_put(sdf_grid * g, int x, int y, sdf_point p)
{
memcpy(&(g->grid[y][x]), &p, sizeof(sdf_point));
}
int sdf_distsq(sdf_point p)
{
return ((p.dx * p.dx) + (p.dy * p.dy));
}
void sdf_compare(sdf_grid * g, sdf_point * p, int x, int y, int offsetx, int offsety)
{
sdf_point other;
sdf_pt_get(g, x + offsetx, y + offsety, &other);
other.dx += offsetx;
other.dy += offsety;
if (sdf_distsq(other) < sdf_distsq(*p))
{
p->dx = other.dx;
p->dy = other.dy;
}
}
int malloc_sdf_grid(sdf_grid * g, int w, int h)
{
int i, abort;
g->w = w;
g->h = h;
g->grid = (sdf_point * *)malloc(h * sizeof(sdf_point *));
if (g->grid == NULL)
{
fprintf(stderr, "malloc_sdf_grid() cannot malloc() g->grid!\n");
free(g);
return 0;
}
for (i = 0; i < h; i++)
{
g->grid[i] = NULL;
}
abort = 0;
for (i = 0; i < h && !abort; i++)
{
g->grid[i] = (sdf_point *) malloc(w * sizeof(sdf_point));
if (g->grid[i] == NULL)
{
abort = 1;
}
}
if (abort)
{
fprintf(stderr, "malloc_sdf_grid() cannot malloc() g->grid[]!\n");
free_sdf_grid(g);
return 0;
}
return 1;
}
void free_sdf_grid(sdf_grid * g)
{
int i;
for (i = 0; i < g->h; i++)
{
if (g->grid[i] != NULL)
{
free(g->grid[i]);
}
}
free(g->grid);
}
void sdf_fill_bitmask_to_sdf_grids(Uint8 * bitmask, int w, int h, sdf_grid * g1, sdf_grid * g2)
{
int x, y;
for (y = 0; y < h; y++)
{
for (x = 0; x < w; x++)
{
if (bitmask[y * w + x])
{
sdf_pt_put(g1, x, y, sdf_pt_inside);
sdf_pt_put(g2, x, y, sdf_pt_empty);
}
else
{
sdf_pt_put(g1, x, y, sdf_pt_empty);
sdf_pt_put(g2, x, y, sdf_pt_inside);
}
}
}
}
void sdf_generate(sdf_grid * g)
{
int x, y;
sdf_point p;
/* Pass 0 */
for (y = 0; y < g->h; y++)
{
for (x = 0; x < g->w; x++)
{
sdf_pt_get(g, x, y, &p);
sdf_compare(g, &p, x, y, -1, 0);
sdf_compare(g, &p, x, y, 0, -1);
sdf_compare(g, &p, x, y, -1, -1);
sdf_compare(g, &p, x, y, 1, -1);
sdf_pt_put(g, x, y, p);
}
for (x = g->w - 1; x >= 0; x--)
{
sdf_pt_get(g, x, y, &p);
sdf_compare(g, &p, x, y, 1, 0);
sdf_pt_put(g, x, y, p);
}
}
/* Pass 1 */
for (y = g->h - 1; y >= 0; y--)
{
for (x = g->w - 1; x >= 0; x--)
{
sdf_pt_get(g, x, y, &p);
sdf_compare(g, &p, x, y, 1, 0);
sdf_compare(g, &p, x, y, 0, 1);
sdf_compare(g, &p, x, y, -1, 1);
sdf_compare(g, &p, x, y, 1, 1);
sdf_pt_put(g, x, y, p);
}
for (x = 0; x < g->w; x++)
{
sdf_pt_get(g, x, y, &p);
sdf_compare(g, &p, x, y, -1, 0);
sdf_pt_put(g, x, y, p);
}
}
}
/* End of Signed Distance Field functions ------------------------------- */
void draw_shaped_gradient(SDL_Surface * canvas, Uint32 draw_color, Uint8 * touched)
{
Uint32 old_colr, new_colr;
int xx, yy;
int pix_idx;
float ratio;
Uint8 draw_r, draw_g, draw_b, old_r, old_g, old_b, new_r, new_g, new_b;
Uint8 *bitmask;
sdf_grid g1, g2;
/* Create space for bitmask (based on `touched`) and SDF output
large enough for the area being filled */
bitmask = (Uint8 *) malloc(sizeof(Uint8) * canvas->w * canvas->h);
if (bitmask == NULL)
{
return;
}
if (!malloc_sdf_grid(&g1, canvas->w, canvas->h))
{
free(bitmask);
return;
}
if (!malloc_sdf_grid(&g2, canvas->w, canvas->h))
{
free(bitmask);
free_sdf_grid(&g1);
return;
}
/* Convert the `touched` values into a bitmask to feed into the SDF routines */
for (yy = 0; yy < canvas->h; yy++)
{
for (xx = 0; xx < canvas->w; xx++)
{
/* Converting 0-255 to 0/1 */
bitmask[yy * canvas->w + xx] = (touched[(yy * canvas->w) + xx] >= 128);
}
}
/* Compute the Signed Distance Field (we'll use as an alpha mask) */
sdf_fill_bitmask_to_sdf_grids(bitmask, canvas->w, canvas->h, &g1, &g2);
sdf_generate(&g1);
sdf_generate(&g2);
/* Get our target color */
SDL_GetRGB(draw_color, canvas->format, &draw_r, &draw_g, &draw_b);
/* Traverse the flood-filled zone */
for (yy = 0; yy < canvas->h; yy++)
{
for (xx = 0; xx <= canvas->w; xx++)
{
/* Only alter the pixels within the flood itself */
pix_idx = (yy * canvas->w) + xx;
if (pix_idx >= 0 && pix_idx < canvas->w * canvas->h)
{
if (touched[pix_idx])
{
sdf_point p;
double dist1, dist2, dist;
sdf_pt_get(&g1, xx, yy, &p);
dist1 = sqrt(sdf_distsq(p));
sdf_pt_get(&g2, xx, yy, &p);
dist2 = sqrt(sdf_distsq(p));
dist = dist1 - dist2;
/* Determine the distance from the click point */
ratio = ((float)((dist * 10) + 255)) / 255.0; // Magic numbers :-( -bjk 2023.02.25
if (ratio < 0.0)
ratio = 0.0;
else if (ratio > 1.0)
ratio = 1.0;
/* Get the old color, and blend it (with a distance-based ratio) with the target color */
old_colr = getpixels[canvas->format->BytesPerPixel] (canvas, xx, yy);
SDL_GetRGB(old_colr, canvas->format, &old_r, &old_g, &old_b);
/* Apply fuzziness at any antialiased edges we detected */
ratio = (ratio * ((float)touched[pix_idx] / 255.0));
new_r = (Uint8) (((float)old_r) * ratio + ((float)draw_r * (1.00 - ratio)));
new_g = (Uint8) (((float)old_g) * ratio + ((float)draw_g * (1.00 - ratio)));
new_b = (Uint8) (((float)old_b) * ratio + ((float)draw_b * (1.00 - ratio)));
new_colr = SDL_MapRGB(canvas->format, new_r, new_g, new_b);
putpixels[canvas->format->BytesPerPixel] (canvas, xx, yy, new_colr);
}
}
}
}
free(bitmask);
free_sdf_grid(&g1);
free_sdf_grid(&g2);
}